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Auxiliary-Field Monte Carlo Methods 

Steven E. Koonin 

I discuss Monte Carlo algorithms for quantum many-body systems that employ 
an auxiliary field to linearize a two-body interaction. These reduce the 
evaluation of the partition function to sampling many one-body evolutions in a 
fluctuating field. Fermions and bosons are treated on an equal footing. 
Applications to potential models and to quantum spin systems are discussed. 
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The not ion of independent  particles moving in a c o m m o n  potential  
underlies our  intuition for many  qua n t um  many-body  systems and also 
provides the foundat ion for more  sophisticated analytical and numerical  
treatements. It is therefore natural  to ask whether we can develop methods  
that take the mean-field solution as a starting point  and then use Monte  
Carlo techniques to refine this to an exact description. In this paper, I dis- 
cuss the progress we have made along these lines during the last few years, 
describing first the general method  (1) and then its application to one- 
dimensional potential  systems (2) and quan tum spin systems33~ 

M E T H O D  

Suppose that  we are faced with describing a system of A particles of 
mass m (fermion or boson)  interacting th rough  a two-body  potential v, so 
that the Hamil tonian  is 

1 
I - I=   m+2 v(x,-xj) (1) 

i = 1  i va j  

W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, Califor- 
nia 91125. 

985 

0022-4715/86/0600-0985505.00/0 �9 1986 Plenum Publishing Corporation 



986 Koonin 

where the {Xi} a r e  the coordinates and the {Pi} the conjugate momenta. In 
particular, suppose that we are interested in gt, the lowest eigenstate of H 
(energy Eo). This state can be generated from any trial state ~b (with 
(~/g~) r  by "filtering" with the imaginary-time evolution operator. A 
specific expression for the exact ground state is 

(H@ [e Hv I ~b} 
Eo= lim (2) 

T-,~ (,~ re-HT I ,/,} 

and the expectation of any observable A is similarly 

< ~ le HT/2Ae HT/2[ ~b ) 
(~ IA[  T} = lim (3) 

T~oo ( ~  le HTI q~} 

Although the many-body evolutions involved in (2 and 3) makes them 
of dubious practical value, considerable simplification is achieved if q5 is 
taken to be a symmetrized (antisymmetrized) product of single-particle 
orbitals for bosons (fermions) and if we use the Hubburd-Stratanovich 
representation of the evolution operator 

e .T=f  DEa(x, t)] e l/2joT~ .... )a'Uo(T, 0) (4) 

Here, the integral is over all c number fields a(x, t) and U~ is a one-body 
evolution operator for a Hamiltonian linear in a 

Ot 
- - -  h.(t) us(t, o) (5a) 

_ p2 1 v(O) + (a, up) (5b) 

In (4 and 5), we have employed the inner-product notation 

(A, vB)= dx f dx' A(x) v(x-x')B(x')  

p(x) is the one-body density operator, and the + ( - )  sign (5b) is for 
bosons (fermions). 

With the representation (4), the energy (2) can be written as the ratio 
of two functional integrals 

Eo = lim ~ D [ a ]  e 1/2-f~ . . . .  )dt(cI) IU.I qs)((H~[U~I,I,)/(~b[U.I~I,)) (6) 

T ~  ~o j" 0 [ ( 7 ]  e 1/2S~( . . . .  )~Y~lU~l ~ >  
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In this way, E0 is expressed as a coherent superposition of the results of 
(infinitely) many one-body evolutions, each of which is parametrized by 
auxiliary field cr and weighted by the Gaussian factor appearing in (4). 

If the integrals in (6) are evaluated through a saddle-point 
approximation, the usual nonlinear Hartree approximation is recovered. 
(Hartree Fock can be obtained by a slightly different linearization of the 
two-body Hamiltonian [ ]). To the extent that this is a good 
approximation, corrections associated with the (possibly anharmonic) fluc- 
tuations of a about its mean value can be evaluated by Monte Carlo 
techniques. 

The practical numerical evaluation of (6) for suitably large but finite T 
(or a similar expression for {~IA] ~ ) ) ,  procedes by a standard 
Metropolis algorithm following discretization on a uniform Cartesian 
space-time lattice. In setting up the calculation, (2/it is important to have a 
temporal discretization of Uo accurate to second-order (as follows from the 
derivation of the Hubbard-Stratanovich representation) and to have an 
efficient way of evaluating changes in the Monte Carlo weight (integrand of 
the denominator in (6)) associated with trial steps in the auxiliary field at 
each time slice. It should be noted that convergence of the integrals 
requires (a, va )<0  for all a, which implies that the momentum-space 
representation of v is negative-definite. If this is not the case, it can be made 
so by a suitable shift in the one-body Hamiltonian. Furthermore, the 
weight is guaranteed to be positive for a boson system or for a fermion 
system with an internal symmetry (e.g., spin or isospin). For other cases 
(such as the spin systems below), the weight can be negative and the sign 
must be accounted for. 

Overall, the method is similar to the "integrating out" of the fermion 
variables in a lattice field theory. However, in those relativistic situations 
the filled Dirac sea implies as many fermions in the vacuum as there are 
lattice sites, with correspondingly large determinants to evaluate. In the 
nonrelativistic systems of interest here there are only a few fermions, and 
anti-symmetry can be guaranteed by evaluating the associated deter- 
minants explicitly. 

O N E - D I M E N S I O N A L  P O T E N T I A L  S Y S T E M S  

As a testing ground for these ideas, we considered fermion and boson 
systems interacting in one dimension. (2) For the boson case, an attractive 
zero-range potential, v(x)=-Vo&(X), was assumed. This Schr6dinger 
problem can be solved exactly, and also in the Hartree approximation. In 
the auxiliary field calculations, some 30 space and up to 160 time points 
were used and an external one-body harmonic oscillator potential coupled 
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Fig. 1. Relaxation of the E(T) for a system of six bosons in one dimension. Eu is the Hartree 
energy and Eo the exact energy. Different symbols correspond to different time steps. 

to the center-of-mass coordinate localized the system. The trial state was 
the Hartree solution. In general, we found the method to work well for 
these boson systems, as shown in Fig. 1. 

For  a model fermion system to test the method, we assumed a four- 
fold internal symmetry and used the two-body potential of Ref. 4, a super- 
position of attractive and repulsive exponential that mimics a nuclear force. 
The trial wave function was a determinant of harmonic oscillator wave 
functions, with the oscillator length chosen to minimize the variational 
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Fig. 2. Relaxation of the ground-state energy of a 12-fermion system in one dimension. 
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energy. Relaxation of the energy of the A = 12 system (three single-particle 
wave functions) from the variational value to a value consistent with that 
of other exact Monte Carlo methods is shown in Fig. 2. 

These studies have indicated several advantages and drawbacks of the 
auxiliary field Monte Carlo method as applied to potential problems. On 
the positive side, fermions and bosons are treated with equal ease and an 
extension to describe light nuclei as nucleons interacting via meson 
exchange does not appear impractical. On the negative side, only deter- 
minental trial states are tractable (because of the one-body evolution), 
making pair correlations difficult to include. Moreover, the spatial grid 
must be fine enough to describe two-body correlations, yet large enough to 
contain the whole system. 

A P P L I C A T I O N  TO SPIN S Y S T E M S  

We have also attempted to apply the auxiliary field method to 
simulate quantum spin systems at finite temperature. (3~ Consider, for exam- 
ple, the nearest-neighbor one-dimensional Heisenberg model, with A spins 
whose Hamilton is 

A 
H= -v ~ di" di+l (7) 

i=1 

Here v > 0 ( < 0 )  for a ferromagnetic (antiferromagnetic) system. We are 
generally interested in thermodynamic averages at a temperature /3 -1, 
characterized by the density operator U(/~)= exp-/~h. 

Our strategy is to express U as a product of many evolutions, each 
associated with a "bond" 

U(fi)  = Jin~ac~ i (1 -~- svo~i" o~i + 1) (8)  

where e= fi/N is the "time" step. A Hubbard Stratonovich linearization 
can then be applied to each bond evolution by introducing an auxiliary 
vector field ~ at each bond 

l +evdi'd,+l~f d~ie-~l~lx~/2(l +ev~i'di)(l +slvl ~i'~s+l) (9) 

so that each spin evolves for each time step under the sum of the fields 
associated with the bonds to which it belongs 

(l+ev2i'di)(l+slvl~i_ldi)~l-4-e(vIi+lv]2, ~).~ (10) 

These expressions are, of course, accurate only to lowest order in e. 
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By compounding many steps of the term (eq. 9 and 10) together in 
(8), the problem can be reduced to that of many single-spin evolutions in 
fluctuating, but correlated, auxiliary fields. These fields can be sampled via 
a Metropolis algorithm, the required spin evolutions for each update being 
carried out easily using the algebra of the Pauli matrices. Note that (9) 
shows that )~ scales as e 1/2, so that fluctuations become larger as e 
decreases. Note also that both v > 0 and v < 0 are treated on equal footing. 

As analytical mean-field approximation can give some insight into this 
formulation. The functional integral for the partition function is found to 
have a saddle-point at ~[ = 0 if/~ Ivl < �88 and at .~ = 2o~ if/~ [vl > l, where h is 
an arbitrary unit vector and 2o satisfies 20 = 2 tan h(2/~ Ivi 2o). This is to be 
contrasted with the usual treatment that predicts a nonvanishing mean 
field for/~ Ivl > �89 The difference is connected with how we have written the 
functional integral. Fluctuation of ~[ about its mean value, which we 
evaluate by Monte Carlo, and then correct the saddle-point approximation 
to the exact solution. 

We have explored the Monte Carlo simulation of the auxiliary-field 
functional integral for ferromagnetic and antiferromagnetic Heisenberg 
systems in one and two dimensions. For both small systems (which can be 
solved analytically) and large systems (up to 8 x 8 in two dimensions) we 
find good convergence for the energy and specific heat at high tem- 
peratures, but there is a marked deterioration in the precision for values of 
// large enough to have a nonvanishing saddle-point field. The precise 
reason for this failure, and possible reformations of the functional integral 
to avoid it, are currently being investigated. 
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